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Bicyclo[2.1.0]pent-2-ene. Tests for the Retro-ene 
Mechanism of Thermal Isomerization1 

Sir: 
The facile thermal conversion of bicyclo[2.1.0]pent-

2-ene (1) to cyclopentadiene (2)2'3 represents a striking 
counterexample both to the many unconstrained 
cyclobutenes which isomerize in the orbital symmetry 
allowed conrotatory mode46 and to other m-bicyclo-
[n.2.0](n + 3)-enes (where n ranges from 2 to 5) which 
rearrange to l,3-cw,cw-cyclic dienes only under far more 
stringent conditions.6 A nonconcerted disrotatory 
electrocyclic process has been tacitly assumed for the 
reaction.2,3'7 
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The simplest disallowed, disrotatory model and 
alternative mechanisms have not been evaluated 
experimentally. Among these alternative mechanisms, 
the symmetry-allowed5 concerted one-step8 (irs

2 + 
cs

2 + o"s2) l,5-sigmatropic hydrogen-shift process 
(3 -»• 4), conforming to the standard retro-ene proto­
type,9 has been the first examined. 
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This retro-ene mechanism predicts 2-deuteriocyclo-
pentadiene as product from bicyclopentene-exo-5-rf, 
and a primary kinetic isotope effect kH/kD « 7-1210 

for the endo-5-d isomer. The disallowed, disrotatory 
model, and a number of other mechanisms, would lead 
exclusively to 5-deuteriocyclopentadiene and would 
show only small secondary deuterium isotope effects 
on the reaction rate. 

To avoid complications from thermal scrambling of 
hydrogens in the deuteriocyclopentadiene products,11 
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they were trapped and analyzed as the 7V-phenyl-
maleimide (NPM) adducts (5).12 The rate of isom­
erization of bicyclopentene did not depend on [NPM]; 
under the experimental conditions, cyclopentadiene 
produced through the thermal rearrangement combined 
bimolecularly with NPM some 103 times faster than it 
would have suffered intramolecular hydrogen mi­
gration.11'13 

5 

A mixture of cyclopentadiene-free exo- and endo-
bicydopentene-J-^ in tetrahydrofuran was prepared by 
photolyzing14,15 cyclopentadiene-5-c?,16 adding an excess 
of NPM to the initially secured mixture of product and 
unreacted diene, and, after 48 hr at —20°, transferring 
the volatile product to a second cold trap. The 
unreacted cyclopentadiene-5-d in the photochemical 
reactor and NPM gave an adduct for nmr analysis: 
the adduct corresponded to a mixture of 74% 5-d 
and 26% 1-d diene (Table I), indicating some thermal 

Table I. Relative Intensities of Proton Absorption in Adduct 5 

Type of proton • 
Vinyl Methine Methylene 

Diene (r 3.70) (r 6.55) (r 8.32) 

Unlabeled 1.96 4.06 1.98 
di, from thermal 

rearrangement 1.93 3.85 1.22 
du after photolysis 1.97 3.76 1.26 
di, calculated for 3 — 4« 1.63 3.76 1.63 

° For retro-ene process, assuming equal proportions of exo- and 
endo-5-d isomers. 

hydrogen scrambling prior to and possibly during the 
photoisomerization. 

Thermal isomerization of the deuterium-labeled 
bicyclopentenes (26% 1-d, 37% exo-5-d, 37% endo-5-d) 
at 40° in the presence of excess NPM in dry neutral 
THF gave adduct 5 which, after thorough purification, 
was analyzed by nmr spectroscopy. The observed 
absorption intensities (Table I) indicate rearrangement 
without hydrogen transfer. The agreement is quanti­
tative, within an estimated 3 % error limit. 

To complement this result, first-order rate constants 
for the rearrangement of bicyclopentene and bicyclo-
pentene-rf6

17 were determined in the gas phase at 80° 
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in a 1 X 10 cm cylindrical quartz cell.18 The rate con­
stants at 1 and 740 mm are given in Table II. No large 
primary deuterium isotope effect is observed. 

Table II. First-Order Gas-Phase Rate Constants for 
Bicyclopentene Isomerization 

Substrate 

H6Cs 
H6Cs 
D6C5 

HeCs 
D6C5 

k X 103, sec-1» 

3.7 ± 1.2C 

2.8 ± 0.5 
1 . 2 ± 0.3 
2.8 ± 0.4 
2.5 ± 0.4 

Pressure, mm6 

50-760 
1 
1 

740 
740 

No. of 
runs 

d 
7 
4 
6 
3 

" A t 80.0 ± 0.05°. ^Bicyclic olefin diluted with propane. 
Probable error. d Calculated from data in ref 2 and 3. 

The labeling results and the small isotope effect on 
the rate constant for the isomerization rule out the 
orbital symmetry allowed retro-ene mechanism for the 
isomerization. They are consistent with the disro-
tatory, disallowed "biradical" process and with several 
other plausible formulations. A distinction among 
three of these is now being sought through the syn­
thesis and rearrangement of bicyclopentene-2,5-c/2. 
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The Microwave Spectrum, Structure, Molecular Dipole 
and Quadrupole Moments, and Magnetic Properties of 
Bicyclo[2.1.0]pent-2-ene 

Sir: 

We have assigned the microwave spectrum of 
homocyclobutadiene (1) and derived some structural 
information therefrom. We have also measured the 
electric dipole moment, the molecular g values, the mag­
netic susceptibility anisotropics, and the molecular 
quadrupole moments. 

Bicyclo[2.1.0]pent-2-ene shown in Figure 1 was 
prepared by a modification of the known procedure1 

and was collected by preparative glpc in a carbon 
tetrachloride solution of /V-phenylmaleimide. The 
sample was distilled directly from the solution at 
— 80° into the microwave absorption cell2,3 cooled 
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(3) The vapor pressure of 1 at — 80° is 45 ju- Reversion of 1 to cyclo­
pentadiene proceeds at a significantly enhanced rate in the brass wave-

also to Dry Ice temperature. The microwave spectro­
graph used has been described before4 and 5-kHz 
Stark modulation was employed in the present in­
vestigation. The technique of searching for absorption 
lines was similar to that used earlier in our microwave 
study of cyclopropanone.5 Bicyclo[2.1.0]pent-2-ene is 
stable in the waveguide at Dry Ice temperature although 
it was reported to have a short lifetime in solution at 
room temperature.1 An initial assignment of the 
rotational spectrum of 1 was obtained on the strong 
J = 1 -*• 2, a dipole-type transitions by their char­
acteristic Stark effect. The observed and calculated 
transition frequencies are listed in Table I. A least-

Table I. Rotational Transitions in Bicyclo[2.1.0]pent-2-ene 

Transition Obsd v," MHz 
(obsd — calcd*)^, 

MHz 

Ooo-loi 
111—2l2 

1 01—2o2 

1 io—2n 
2l2~3l3 

2o2—3 03 

221—322 

220-321 

2n—3i2 

4u-4i3 

11734.19 
22166.75 
23214.68 
24769.92 
33104.42 
34245.47 
35202.53 
36159.53 
36977.55 
12799.54 

0.02 
0.01 
0.06 

- 0 . 0 2 
- 0 . 0 1 
- 0 . 0 1 

0.02 
0.00 

- 0 . 0 4 
0.01 

° Estimated uncertainty; ±0.1 MHz. b Calcula ted from A 
10811.65, B = 6517.883, and C = 5216.287 M H z . 

squares fit of all observed transition frequencies gives 
the rotational constants of A = 10811.65 ±0 .11 MHz, 
B = 6517.883 ± 0.0025 MHz, and C = 5216.287 ± 
0.0024 MHz. If we assume the four-membered ring in 
1 to be planar as in cyclobutene,6 the a and c principal 
inertial axes would lie in the plane of symmetry of 1. 
The a axis is tilted about 22° from the plane of the 
four-membered ring. We were not able to observe the 
c-dipole transitions indicating that ixc < Ma-

To deduce information on the molecular structure of 
1, initial structural parameters were taken from bicyclo-
[1.1.0]butane7 and cyclopentadiene8 (see also the struc­
tures of cyclopentene9 and cyclobutene6). The three-
membered ring C-C bond lengths and the dihedral 
angle between the two ring planes, a, were varied 
to fit the experimental moments of inertia, giving 
i?(Cr-C4)bridge = 1-56 A, /J(Ci-C5) = 1.53 A, and 
a = 114°. The calculated moments of inertia in 
amu-A2 are Ia = 46.70, Ib = 77.45, and/ , = 96.68 and 
can be compared with the experimental values of 
h = 46.7583, h = 77.5618, and Ic = 96.9153, also in 
amu-A2 (conversion unit used: 505375 MHz amu-A2). 
The best fit structure is shown in Figure 1. 

guide above —80° when compared with the rate of isomerization in a 
quartz vessel. 
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